PRIMITIVE GROUPS ACTIONS AND GROUPS
DESCRIPTIONS

GUSTAVO DE PAULA
SUPERVISED BY ANDRE NIES

ABSTRACT. We say a group action is primitive if it does not preserve
a partition on its action domain. We show that any group action can
be decomposed in primitive group actions. We are also going to prove
a better version of the reachability theorem presented by Babai and
Szemerédi in [4].

1. INTRODUCTION

It is already known that some groups can be described in first-order lan-
guage [1], in other worlds, there is a first-order sentence ¢ such that G is
a model of ¢ up to isomorphism. In finite cases ¢ can be a description of
the group table, it is easy to do but it is very inefficient because that way
6] = O(IG?).

In [2] and [3] it was shown how to make shorter group description, usually
of polylogarithmical size, i.e., of size O(log™(|G])). There are two possible
ways to develop the subject, we can make the group descriptions even shorter
or we can find a way to describe other structures related to group theory in
first-order logic. We are going to show results for both situations.

We are going to show a better version of the reachability theorem that was
first proved in [4] and used in [2]. It creates a more efficient set of generators
for a group. We are also going to prove a way to decompose a group action
into primitive group actions, we believe it can be used to describe group
actions in first-order logic.

2. REACHABILITY THEOREM

Definition 2.1. Let G be a group generated by a subset 5, a straight-line
program is a sequence L = (g1, 92, 93, ..., gn) Where for i < n:

(1) gie Sor
(2) gi = gm - gn for m,n < i or
(3) gi = gm ! for m < i.
We say that g; is generated by L and we define the straight-line cost of
some g € G to be length of the shortest straight-line program containing g.

Reachability Theorem 2.2. Given a group G of order n and a set S of
generators, the straight-line cost of any element of G is < log(n)? + log(n).

The proof of this theorem is due by creating a subset Z(s) of G such that
any g € G can be generated from it in at most 24 steps. This set is not men-
tioned in the statement of the theorem but it was used by Nies and Tent in [2]

1



2 GUSTAVO DE PAULA SUPERVISED BY ANDRE NIES

to create a existential first-order formula stating that g €< s1, 89, , 8y >,
s; € G.

Proof. We shall define recursively a set Z(s) = {z1, 22,23, -+ ,2s} C G.
Let Z(i) = {zj : j <1}, K(1) = {27297 - - - 27" 1 oj € {0,1}} and let ¢(4)
be the length of the shortest straight-line program that contains Z(i).
We consider K(0) = {1} and ¢(0) = 0.
o If K(i)"'K(i) = G we define s = i and stop.
e Else we choose z;+1 € G— K (i) 1 K (i) that minimizes c(i+1) —c().

Claim 1. Ifi < s then |K(i+ 1)| = 2|K(4)].

Proof. Clearly |K (i + 1)| < 2|K(7)].

Suppose |K(i+1)| < 2|K(i)|, then by the pigeonwhole principle there are
ki,ko € K(Z + 1) with k1 = ko.

ki = 2002522 = PR zzﬁf{l = ko with «j, 8; € {0,1}.

Let k be the biggest integer such ay # Bk, assuming that a, = 1. We have
2 = 2z kg0 e P B -'zlfi_ll, then 2, € K(k—1)"'K(k—1)
which is a contradiction, therefore |K(i + 1)| > 2|K(i)| and |K(i + 1)] =
2| K (7)]. O

Corollary 2.3. s <log(|G|). O
Claim 2. c(i + 1) — (i) < 2i.

Proof. Since the Cayley graph of G is connected and K (i) 'K (i) # G for
i < s, there is an element of the form q.r € G—K (i) 'K (i), ¢ € K(i) 1K (i),
r € S. Let us define z;41 = q.r.

For any k € K(i), at most ¢ steps are needed to generate k from the
straight-line program that generated z; because k is the product of at most
i elements of the straight-line program.

It takes at most 2i steps to generate ¢ € K (i)"'K (7). There is no point
in generating the element of maximum length because it is the identity,
2i — 1 steps are enough. To generate q.r € G — K (i) 'K (i) 2i steps are
sufficient. O

Corollary 2.4. c(i) < i? — 1.

Since K(s)"'K(s) = G, any g € G can be written in the form g = kj 'k,
k1,ko € K(s). We need s — s steps to generate Z(s) and another 2s — 1
steps to generate g from Z(s).

For any g € G, ¢(g9) < s+ 5 — 1 < log(n)? + log(n).

This version of the reachability theorem has a better upper bound than
the original version from Babai and Szemerdi. The original upper bound
was (1 + log(|G]))?. This change is due to the claim 2, where we had
c(i+1) —¢(i) < 2i while Babai and Szemerdi had 2i + 1. This upper
bound improvement raised the question if it is possible to improve it even
more.

During our work we had two ideas about how to improve the upper bound:

The first idea is a detail on the first corollary, which states that s < log(|G|)
because |K (s)| = |G|, therefore K(s) = G and then K (s) 'K (s) = G.It can
be understood as |K(i)| = 2¢ being used as a lower bound to the size of



PRIMITIVE GROUPS ACTIONS AND GROUPS DESCRIPTIONS 3

K(i)~'K (i), if some lower bound for the size of K(s)"!K(s) bigger than
| K (s)| is provable, we could use it to reduce the value of s and then reduce
the upper bound of the theorem.

The second idea is to create reachability theorems for specific cases. For
example, in the abelian case with independent set of generators it is possible
to prove a version of the theorem with 3.log(|G|) as the new the upper bound,
but we did not find a way to prove it for broader cases.

2.1. Gradual Reachability theorem. Let’s consider a case where you
not only need a efficient generator set for the group G but you need efficient
generators sets for a sequence of subsets of G, each one included in the next.

Let cost(A|T) be the length of the shortest straight line program com-
puting A from T.

Theorem 2.5. Let G be a group, S a set of generators of G and T1 C Ty C
- C Ty CG. There are Zy C Zy C -++ Zy C G such cost(Z;|S) < log(|T;|)?
and t € T; can be generated from Z; in at most 2.log(|T;|) steps.

Proof. The proof is similar to the usual reachability theorem:
The definition of K (i), c(i) are the same as in the usual reachability the-
orem. We only change the recursion that defines Z(s).
We consider Ky(0) = {1}, ¢(0) = 0 and initially j = 1.
While Tj € K (i) 1 K(i) we define Z; = Z(i) and j = j + 1.
If K(i)"'K (i) = G we define s = i and stop.
If there is g € Tj11 — K(i) "' K (i) such the cost to compute g from
Z (1) is less than 2i, define z;41 = g.
Else we choose z;+1 € G — K (i) "1 K (i) that minimizes (i + 1) — c(4).
(]

There are no major difference in its proof when compared with the usual
theorem. It is important to notice that it is possible to have Z; = Z;, for
1 < k. That is the reason for us to have a while loop instead of another if.

3. REACHABILITY ALGORITHM

The algorithm 1 uses the group table and S as inputs to build the set Z(s)
as stated in the theorem 2.2. It is interesting to change the computational
context from straight line programs to the usual computational structure.
This algorithm is largely based on Dijkstra algorithm for graphs and it runs
in polynomial time.

4. PRIMITIVE ACTIONS

The main theorem of this section shows that it is possible to decompose
a finite group action X v\ G into primitive actions over partitions of X.
Our initial inspirations was to build a group action decomposition similar
to the composition series of groups, but instead of simple groups there are
primitive actions as factors.

The motivation was to make possible to describe a primitive action us-
ing first-order logic. We found out that given a group action, the action
decompositions are possible but not always unique.



GUSTAVO DE PAULA SUPERVISED BY ANDRE NIES

[Reachability algorithm]
Data: Group table and S
Result: The set of generators Z(s);

cost[e]=0
add e to Q //Q=K (i) 1K (i)
for g € G do
if g # e then
cost[g] = |G|// cost[g] is the straight-line cost of g
add g to J// J=G — K(i) 'K (i)
end
end
for s € S do
| cost[s] =1
end
while J # () do
h = element in J with min cost[h]
add h to Z
for ¢ € Q do
if kh € J then
remove kh from J
add kh to Q'
end
if h='k € J then
remove h~ 'k from .J
add h~tkhtoQ'
end
f h~'kh € J then
remove h~'kh from J
add h='kh to Q'
end
nd
or g € Q' do
add q to Q
remove ¢ to @’
nd
or g € () do
for s € S do
if cost[qs| < cost[q] + 1 then
| cost[qs] = cost[q] + 1
end
if cost[sq] < cost[q] + 1 then
| cost[sq] = cost[q] + 1
end
end
end

[=n

= 0

= 0

end

return 7
Algorithm 1: How to generate Z(s) from the group table and the set of

generators



PRIMITIVE GROUPS ACTIONS AND GROUPS DESCRIPTIONS 5

Before introducing the concept of primitive group actions, it is necessary
to define what is a group action.

Definition 4.1. Let G be a group and M be a set, named as action domain,
we say that G acts on M iff for m € M, g1, g2 € G, we have that mg;, mgs €
M, (mg1)g2 = m(g1 - g2) and me = m.

The concept of group actions can look complicated at first sight, but ex-
amples of it are presented to algebra students when they are first introduced
to the concept of groups without naming it as actions.

Our initial examples of groups are the symmetries of polygons and per-
mutations over finite sets. The connection of the symmetry group and the
set of vertices of the polygon can be described as a group action. In the
same way the connection between the permutation group and the set it is
permuting can be described a a group action.

Three definitions that we are going to use:

Definition 4.2. A group action X »\ G is called transitive iff for any
xz,y € X, there is m € G such z = ym.

Definition 4.3. Let G be a group acting on a set X. The stabilizer of
r € X is Gy ={g € Glzg = z}.

Definition 4.4. Let G be a transitive permutation group over X, we say
Y C X is a domain of imprimitivity iff 1 < |Y| < |X|and Vg € G, Yg=Y
orYgNnY =10.

Theorem 4.5. Let G be a transitive permutation group over X and Y be
an domain of imprimitivity of X.

(1) E={Yg:g € G} is a partition of X.

(2) [x]g9 = [xg]E for x € X and g € G.

(3) The elements of E have size |Y|.

Proof. (1) Since G is transitive over X then g cp Bi = X.

Let H = {g|Yg =Y,9 € G}, since G is transitive and Y is a domain of
imprimitivity, yH =Y fory € Y.

Suppose z € Yg1 NYgs, for gi,90 € G. There are yi,y2 € Y such
Y191 = T = yaga, then y1 = yogag; ' therefore gog7' € H and go € Hgy.
That way, we have that Y g1 = y1Hg1 = y1Hge = Y go and therefore F is a
partition of X.

(2)Clearly [y|pg = [yg]p for y € Y.

Let © € X, then there is # € G such ym = z for y € G. Then [z]g9 =
lyrleg = ([ylem)g = [yle(rg) = [ymgls

(3)It follows directly from the fact that G is a permutation group over X
and, therefore, a bijection. O

Using the previous theorem and definition it is possible to understand a
domain of imprimitivity as a element of a partition of X that is G-invariant.

When you have a group acting on itself by right multiplication, you can
understand a sub-group and its co-sets as domains of imprimitivity. We will
show more examples later on.

It is possible to notice that (3) let us make a connection between the size
of the action domain and the domains of imprimitivity. A straightforward



6 GUSTAVO DE PAULA SUPERVISED BY ANDRE NIES

consequence of that any action over a action domain with prime size has no
domain of imprimitivity and, as stated in the following definition, the action
is primitive.

Definition 4.6. A transitive group action of a group G over a finite set X
is primitive iff G has no domain of imprimitivity.

The definition of primitive action is adequate, but it can be hard to prove
it directly, so we have a theorem that helps us do it.

Theorem 4.7. A transitive group action of a group G over a finite set X
is primitive iff G, is mazximal for every a € X.

Proof. Suppose G is not maximal, so there is H with G, < H < G.

We claim Y = aH is a domain of imprimitivity. Since G, < H, |aH| > 2.

Since G is transitive, for any z € X x = ag for some g € G. Suppose
Y = X, then for any g € G there is h € H such ag = ah, therefore a = ahg™*
and then hg~! € G,. So we have H = G, which is a contradiction.

Let y € Y NYyg, then there are hi,ho € H such y = ah; = ahog then
a= ahgghl_l and therefore g € H and finally Y = Yg.

Conversely, suppose G has a domain of imprimitivity Y.

Let H={r :Yr =Y}. We may suppose a € Y, s0 G, < H. YVisa
domain of imprimitivity, then |Y| > 1 so there is b € Y with b # a. G
is transitive then there is # € G such amr = b. Since Y is a domain of
imprimitivity, Yr =Y then 1 € H — G, and G, < H.

Since |Y| < | X| and G is transitive, there is m € G such ar ¢ Y. Therefore
m¢ H, H<G.

That way, there is H such G, < H < G. O

Corollary 4.8. Let G be a permutation group over a finite set X and H
such G, < H < G with a € X then aH = {ah : h € H} is a domain of
imprimitivity.

Another equivalent definition of primitive action that is commonly used
is:
Theorem 4.9. Let G be a transitive permutation group over a finite X.

G is primitive iff any non-diagonal orbit of X? ~ G describe a connected
graph on X.

Proof. Suppose there is an non-diagonal orbit {z,y}G of (z,y) € X? that
describes a not connected graph. We want to prove that the connected
component C, C X containing x is a domain of imprimitivity.

Since {z,y}G is not connected, Cy; # X. We claim that Cpg is connected
and Cy is a domain of imprimitivity.

Take c1g,c2g € Cpg, there is a path A connecting c; to ¢y, that way Ag
connects c1g to cog and therefore Cg is connected.

Let z € C,NC,yg, since C,g is connected, any element of C', g is connected
to z and z is connected to x. We have that C.g = C, and C, is a domain
of imprimitivity.

Suppose there is some domain of imprimitivity ¥ C X and let x,y € Y,
x # y. Let w be the graph described by {z,y}G.

We claim that there is some z € X that is not connected to x by w. Take
z € X =Y, suppose there is a path



PRIMITIVE GROUPS ACTIONS AND GROUPS DESCRIPTIONS 7

{1’,y} = {xvy}g(b {x,y}gl, X3 {x,y}gn = {mgn,z}

of w connecting = to z. We are going to prove by induction that z € Y:

By hypothesis, {z,y} C Y, since {z,y} N{z,y}g1 # 0 and Y is a domain
of imprimitivity, then {z,y}g1 C Y.

Similarly, {z,y}g; C Y implies {z,y}gi+1 C Y. Therefore {zg,,z} C Y
and z € Y which is a contradiction.

That way, w is not connected. U

Iwasawa’s Lemma is an important criterion to show that a finite group
is simple, in [5] it was used to prove that SL,(q), Fi(q), Es(q) and others
groups are simple.

The version of the lemma we state here does not mention the group being
simple, the version that does has the hypothesis of G being perfect,i.e.,
equals to the commutator subgroup.

Iwasawa’s Lemma 4.10. Let G be a primitive permutation group over X.
Suppose that for some a € X, G, contains a abelian subgroup A such A<G,
whose conjugates in G generate all of G. Then any nontrivial subgroup N <G
contains the commutator subgroup of G.

Proof. Suppose N is a nontrivial normal subgroup of GG then there is a € X
such N ¢ G,. Suppose there isn’t such a, then N C G,Vx € X which is a
contradiction since G acts faithfully on X.

By 4.7 (G, is maximal, then NG, = G. Let A be a normal subgroup of
G, as stated in Iwasawa’s Lemma. For any g € G, g = n.k, n € N,k € G,.
Then

gAg ' =nkAk 'n ! =nAn~' C NAN = NA

Since the conjugates of A generate all G, NA = G.

By the second isomorphism theorem G/N = NA/N = A/(N N A)

Since A/(N N A) is abelian, N N A contains the commutator subgroup
and therefore N also contains it. O

4.1. Primitive decomposition.

Definition 4.11. Two group actions U = S; » Gy and U/ = Sy ~ Go
are equivalent iff there is a bijection 0 : S — S3 and a group isomorphism
¢: Gy — Gy such Vs € S1, Vg € Gp, 0(s - g) = 0(s).9(g).

Theorem 4.12. Let G be a group transitivily acting on a set X. Let
Go=Hy<Hi<---<H,=C

be a sequence of subgroups of G such that H;—1 is mazimal on H; for i > 0.
Then

(1) [:U]E/E A~ H; is a primitive action and
) L1
2) la|p. N H; is equivalent to [b] 1. ~ HY,
® llg, ),
where E; == {aH;g: g € G}, b =ap with a,b € X andp € G.
Proof. (1) By definition: [z]g, = {aH;g: 2z = ag,g € H;} and
) ={aH;_1h:h € H;}.

WlE s, | = et }



8 GUSTAVO DE PAULA SUPERVISED BY ANDRE NIES

H;_1 is the stabilizer of the action and since it is maximal in H; the
action is primitive.

(2) We have that y = zp,p € G. Let § : X - X and ¢ : G — G
behaving like in the diagram:

TN
[Q]Ei/Ei,l H;
9:x»—>xpl brg—gP
TN

2

[b]Ei/Ei—l HP
Remark 4.13. [J:]E/E ={aH;—1h : h € H;}
v i1

By 4.8 we have that aH; with 1 < j < n is a domain of imprimi-
tivity. By 4.5 Ej is a partition with [7]g;9 = [zg]E,

Let a = aH; 1k € [a]EZ,/E and g € G. Then:
i1

0(a) = aH; _1hp
= aH;_1pp 'hp
= aH;_1p¢(h)
= [a]g, ,po(h)
= lap|E,_, 9(h)
= [blg;_, ¢(h)

0(ag) = aH;_1hgp
= aH;_1pp " hpp ™' gp
= aH;_1pp(h)p(g)
= [a]g,_,po(h)d(g)
= [ap]5,_,po(h)é(g)
= [bg,_,9(h)9(g) = 0(a)d(g)
O

4.2. Examples of decompositions. We intend to show three examples of
primitive decomposition using the alternating group Ay.

Example 4.14. The simplest example is A4 permuting a set X with 4 el-
ements as induced by Sy. In this case, the stabilizer of any element is a
isomorphic copy of Z3 and mazximal, so the action is primitive. In this case,
our decomposition is trivial.

Example 4.15. Let H < Sg,H =< (34)(56), (12)(56), (135)(246) > acting
on X ={1,2,3,4,5,6}.

Clearly J =< (34)(56), (12)(56) >= Z2. Take o = (135)(246) since J is
small, it is not hard to calculate and see that a~'Ja = J and therefore J <



PRIMITIVE GROUPS ACTIONS AND GROUPS DESCRIPTIONS 9

H.J, Ja and Jo? are the only coset, therefore |H| = 12. Taking (34)(56) =
B, (12)(56) = a®Ba, we can now compute that H satisfy the presentation of
Ay < a, Blad, B2, (aB)3 >, therefore Ay = H

N

< (34)(56), (12)(56) >= 72 (135)(246) >= Z3

56> 79

FI1GURE 1. Subgroup Lattice of A4 < Sg

Not all subgroups of H are represented in the lattice, but any other subgroup
is isomorphic to those represented.

It is clear that < (34)(56) >= Z3 is the stabilizer of 1 € X, since it is not
maximal H does not act primitivily on X.

Using 4.12 we have that Z < Z2 < H is a chain of submaximal subgroups
as described by 4.12, X/FEy and X/E?2 are trivial partitions.

The other partition and the group actions that arise from the theorem

can be represented like this:
2 3
/\\7\

6—5 6—5 6—5
(A) X/Ey (B) (&, /B, » Hi (C) Eo/Ey N Hy

sON ) 3\4

1 4 1

FIGURE 2. Primitive decomposition of A4 < Sg

Example 4.16. Let Ay acting on itself by right multiplication.

Clearly {e} is the stabilizer of any a € A4. Looking at figure 1 we see
that it is possible to choose two different chains of submaximal subgroups:
Go= Hy < Zy < Z3 < Ay = H3 and
Go =Ky < Zg < Ay = Ko



10 GUSTAVO DE PAULA SUPERVISED BY ANDRE NIES

Since they have different lengths they give us two different decompositions,
one decompose the action into 3 primitive actions while the other decompose
it into 2 primitive actions.

We can represent the two different action decomposition as follows:

[zl g N\ Hy is a permutation between the two elements of [z]p ,
1/ Eq 1/ Eq
represented as edges in Figure 3:
() ——— (12)(34) (13)(24) ——— (14)(23)
(123) —— (243) (142) —— (134)
(132) —— (143) (124) —— (234)

FIGUurE 3. X/E;

[l g, /B N Hy is a permutation between the two elements of [x] /B,

represented as ellipses in Figure 4:

() — (12)(34) (13)(24) — (14)(23)
(123) —— (243) (142) —— (134)
(132) ——— (143) (124) —— (234)

FIGURE 4. X/FE»

[x] Es/p, \ Hj is equivalent to Z3 acting on itself by right multiplication,

that is also equivalent to action described in 4.15.
Let F; be the partition generated by K; as described by 4.12. X/F; can

be represented as:

9) (12)(34) (13)(24) (14)(23)
| | |

(123) (134) (243) (142)
| | |

(132) (234) (124) (143)

FIGURE 5. X/F;

[x] £ IF A K is equivalent to Z3 acting on itself by right multiplication.
0
[x] Fy/p A Ky is equivalent to Z3 acting on itself by right multiplication.
1
To study the relation between different decompositions of a same action
or the conditions for uniqueness of the decomposition might be a good way
to understand better group actions and their decompositions.



PRIMITIVE GROUPS ACTIONS AND GROUPS DESCRIPTIONS 11

REFERENCES

André Nies. Describing Groups. Bull. Symb. Logic. 18 no 3 (2007), 305-359. 1
André Nies and Katrin Tent. Describing finite groups by short first-order sentences.
To be published 1, 2

Yuki Maehara. Describing groups using first-order language. arXiv:1305.0080
[math.GR] 1

Lészl6 Babai and Endre Szemerédi. On the complexity of matrix group problems
1. Proceedings of 25th Annual Symposium on Foundations of Computer Science 1
Robert A. Wilson. The Finite Simple Groups. Springer Science & Business Media,
2009 4



	1. Introduction
	2. Reachability Theorem
	2.1. Gradual Reachability theorem

	3. Reachability algorithm
	4. Primitive actions
	4.1. Primitive decomposition
	4.2. Examples of decompositions

	References

