
PRIMITIVE GROUPS ACTIONS AND GROUPS

DESCRIPTIONS

GUSTAVO DE PAULA
SUPERVISED BY ANDRÉ NIES

Abstract. We say a group action is primitive if it does not preserve
a partition on its action domain. We show that any group action can
be decomposed in primitive group actions. We are also going to prove
a better version of the reachability theorem presented by Babai and
Szemerédi in [4].

1. Introduction

It is already known that some groups can be described in first-order lan-
guage [1], in other worlds, there is a first-order sentence φ such that G is
a model of φ up to isomorphism. In finite cases φ can be a description of
the group table, it is easy to do but it is very inefficient because that way
|φ| = O(|G|2).

In [2] and [3] it was shown how to make shorter group description, usually
of polylogarithmical size, i.e., of size O(logn(|G|)). There are two possible
ways to develop the subject, we can make the group descriptions even shorter
or we can find a way to describe other structures related to group theory in
first-order logic. We are going to show results for both situations.

We are going to show a better version of the reachability theorem that was
first proved in [4] and used in [2]. It creates a more efficient set of generators
for a group. We are also going to prove a way to decompose a group action
into primitive group actions, we believe it can be used to describe group
actions in first-order logic.

2. Reachability Theorem

Definition 2.1. Let G be a group generated by a subset S, a straight-line
program is a sequence L = (g1, g2, g3, ..., gn) where for i ≤ n:

(1) gi ∈ S or
(2) gi = gm · gn for m,n < i or
(3) gi = gm

−1 for m < i.

We say that gi is generated by L and we define the straight-line cost of
some g ∈ G to be length of the shortest straight-line program containing g.

Reachability Theorem 2.2. Given a group G of order n and a set S of
generators, the straight-line cost of any element of G is ≤ log(n)2 + log(n).

The proof of this theorem is due by creating a subset Z(s) of G such that
any g ∈ G can be generated from it in at most 2i steps. This set is not men-
tioned in the statement of the theorem but it was used by Nies and Tent in [2]

1

2 GUSTAVO DE PAULA SUPERVISED BY ANDRÉ NIES

to create a existential first-order formula stating that g ∈< s1, s2, · · · , sr >,
si ∈ G.

Proof. We shall define recursively a set Z(s) = {z1, z2, z3, · · · , zs} ⊂ G.
Let Z(i) = {zj : j ≤ i}, K(i) = {zα1

1 .zα2
2 · · · z

αi
i : αj ∈ {0, 1}} and let c(i)

be the length of the shortest straight-line program that contains Z(i).
We consider K(0) = {1} and c(0) = 0.

• If K(i)−1K(i) = G we define s = i and stop.
• Else we choose zi+1 ∈ G−K(i)−1K(i) that minimizes c(i+1)−c(i).

Claim 1. If i < s then |K(i+ 1)| = 2|K(i)|.

Proof. Clearly |K(i+ 1)| ≤ 2|K(i)|.
Suppose |K(i+1)| < 2|K(i)|, then by the pigeonwhole principle there are

k1, k2 ∈ K(i+ 1) with k1 = k2.

k1 = zα1
1 .zα2

2 · · · z
αi+1

i+1 = zβ11 .zβ22 · · · z
βi+1

i+1 = k2 with αj , βj ∈ {0, 1}.
Let k be the biggest integer such αk 6= βk, assuming that αk = 1. We have

zk = z
−αk−1

k−1 · · · z−α2
2 .z−α1

1 .zβ11 .zβ22 · · · z
βk−1

k−1 , then zk ∈ K(k − 1)−1K(k − 1)
which is a contradiction, therefore |K(i + 1)| ≥ 2|K(i)| and |K(i + 1)| =
2|K(i)|. �

Corollary 2.3. s ≤ log(|G|). �

Claim 2. c(i+ 1)− c(i) ≤ 2i.

Proof. Since the Cayley graph of G is connected and K(i)−1K(i) 6= G for
i < s, there is an element of the form q.r ∈ G−K(i)−1K(i), q ∈ K(i)−1K(i),
r ∈ S. Let us define zi+1 = q.r.

For any k ∈ K(i), at most i steps are needed to generate k from the
straight-line program that generated zi because k is the product of at most
i elements of the straight-line program.

It takes at most 2i steps to generate q ∈ K(i)−1K(i). There is no point
in generating the element of maximum length because it is the identity,
2i − 1 steps are enough. To generate q.r ∈ G − K(i)−1K(i) 2i steps are
sufficient. �

Corollary 2.4. c(i) ≤ i2 − i.

Since K(s)−1K(s) = G, any g ∈ G can be written in the form g = k−1
1 k2,

k1, k2 ∈ K(s). We need s2 − s steps to generate Z(s) and another 2s − 1
steps to generate g from Z(s).

For any g ∈ G, c(g) ≤ s2 + s− 1 ≤ log(n)2 + log(n).

This version of the reachability theorem has a better upper bound than
the original version from Babai and Szemerdi. The original upper bound
was (1 + log(|G|))2. This change is due to the claim 2, where we had
c(i+ 1) − c(i) ≤ 2i while Babai and Szemerdi had 2i + 1. This upper
bound improvement raised the question if it is possible to improve it even
more.

During our work we had two ideas about how to improve the upper bound:
The first idea is a detail on the first corollary, which states that s ≤ log(|G|)

because |K(s)| = |G|, therefore K(s) = G and then K(s)−1K(s) = G.It can
be understood as |K(i)| = 2i being used as a lower bound to the size of

PRIMITIVE GROUPS ACTIONS AND GROUPS DESCRIPTIONS 3

K(i)−1K(i), if some lower bound for the size of K(s)−1K(s) bigger than
|K(s)| is provable, we could use it to reduce the value of s and then reduce
the upper bound of the theorem.

The second idea is to create reachability theorems for specific cases. For
example, in the abelian case with independent set of generators it is possible
to prove a version of the theorem with 3.log(|G|) as the new the upper bound,
but we did not find a way to prove it for broader cases.

2.1. Gradual Reachability theorem. Let’s consider a case where you
not only need a efficient generator set for the group G but you need efficient
generators sets for a sequence of subsets of G, each one included in the next.

Let cost(A|T) be the length of the shortest straight line program com-
puting A from T.

Theorem 2.5. Let G be a group, S a set of generators of G and T1 ⊂ T2 ⊂
· · · ⊂ Tk ⊂ G. There are Z1 ⊂ Z2 ⊂ · · ·Zk ⊂ G such cost(Zi|S) ≤ log(|Ti|)2

and t ∈ Ti can be generated from Zi in at most 2.log(|Ti|) steps.

Proof. The proof is similar to the usual reachability theorem:
The definition of K(i), c(i) are the same as in the usual reachability the-

orem. We only change the recursion that defines Z(s).
We consider K0(0) = {1}, c(0) = 0 and initially j = 1.

• While Tj ⊂ K(i)−1K(i) we define Zj = Z(i) and j = j + 1.
• If K(i)−1K(i) = G we define s = i and stop.
• If there is g ∈ Tj+1 −K(i)−1K(i) such the cost to compute g from
Z(i) is less than 2i, define zi+1 = g.
• Else we choose zi+1 ∈ G−K(i)−1K(i) that minimizes c(i+1)−c(i).

�

There are no major difference in its proof when compared with the usual
theorem. It is important to notice that it is possible to have Zi = Zi+1 for
i < k. That is the reason for us to have a while loop instead of another if .

3. Reachability algorithm

The algorithm 1 uses the group table and S as inputs to build the set Z(s)
as stated in the theorem 2.2. It is interesting to change the computational
context from straight line programs to the usual computational structure.
This algorithm is largely based on Dijkstra algorithm for graphs and it runs
in polynomial time.

4. Primitive actions

The main theorem of this section shows that it is possible to decompose
a finite group action X x G into primitive actions over partitions of X.
Our initial inspirations was to build a group action decomposition similar
to the composition series of groups, but instead of simple groups there are
primitive actions as factors.

The motivation was to make possible to describe a primitive action us-
ing first-order logic. We found out that given a group action, the action
decompositions are possible but not always unique.

4 GUSTAVO DE PAULA SUPERVISED BY ANDRÉ NIES

[Reachability algorithm]
Data: Group table and S
Result: The set of generators Z(s);

cost[e]=0
add e to Q //Q=K(i)−1K(i)
for g ∈ G do

if g 6= e then
cost[g] = |G|// cost[g] is the straight-line cost of g
add g to J// J=G−K(i)−1K(i)

end

end

for s ∈ S do
cost[s] = 1

end

while J 6= ∅ do
h = element in J with min cost[h]
add h to Z
for q ∈ Q do

if kh ∈ J then
remove kh from J
add kh to Q′

end

if h−1k ∈ J then
remove h−1k from J
add h−1khtoQ′

end

if h−1kh ∈ J then
remove h−1kh from J
add h−1kh to Q′

end

end

for q ∈ Q′ do
add q to Q
remove q to Q′

end

for q ∈ Q do
for s ∈ S do

if cost[qs] < cost[q] + 1 then
cost[qs] = cost[q] + 1

end

if cost[sq] < cost[q] + 1 then
cost[sq] = cost[q] + 1

end

end

end

end
return Z

Algorithm 1: How to generate Z(s) from the group table and the set of
generators

PRIMITIVE GROUPS ACTIONS AND GROUPS DESCRIPTIONS 5

Before introducing the concept of primitive group actions, it is necessary
to define what is a group action.

Definition 4.1. Let G be a group andM be a set, named as action domain,
we say that G acts on M iff for m ∈M, g1, g2 ∈ G, we have that mg1,mg2 ∈
M, (mg1)g2 = m(g1 · g2) and me = m.

The concept of group actions can look complicated at first sight, but ex-
amples of it are presented to algebra students when they are first introduced
to the concept of groups without naming it as actions.

Our initial examples of groups are the symmetries of polygons and per-
mutations over finite sets. The connection of the symmetry group and the
set of vertices of the polygon can be described as a group action. In the
same way the connection between the permutation group and the set it is
permuting can be described a a group action.

Three definitions that we are going to use:

Definition 4.2. A group action X x G is called transitive iff for any
x, y ∈ X, there is π ∈ G such x = yπ.

Definition 4.3. Let G be a group acting on a set X. The stabilizer of
x ∈ X is Gx = {g ∈ G|xg = x}.

Definition 4.4. Let G be a transitive permutation group over X, we say
Y ⊂ X is a domain of imprimitivity iff 1 < |Y | < |X| and ∀g ∈ G, Y g = Y
or Y g ∩ Y = ∅.

Theorem 4.5. Let G be a transitive permutation group over X and Y be
an domain of imprimitivity of X.

(1) E = {Y g : g ∈ G} is a partition of X.
(2) [x]Eg = [xg]E for x ∈ X and g ∈ G.
(3) The elements of E have size |Y |.

Proof. (1) Since G is transitive over X then
⋃
Ei∈E Ei = X.

Let H = {g|Y g = Y, g ∈ G}, since G is transitive and Y is a domain of
imprimitivity, yH = Y for y ∈ Y .

Suppose x ∈ Y g1 ∩ Y g2, for g1, g2 ∈ G. There are y1, y2 ∈ Y such
y1g1 = x = y2g2, then y1 = y2g2g

−1
1 therefore g2g

−1
1 ∈ H and g2 ∈ Hg1.

That way, we have that Y g1 = y1Hg1 = y1Hg2 = Y g2 and therefore E is a
partition of X.

(2)Clearly [y]Eg = [yg]E for y ∈ Y .
Let x ∈ X, then there is π ∈ G such yπ = x for y ∈ G. Then [x]Eg =

[yπ]Eg = ([y]Eπ)g = [y]E(πg) = [yπg]E
(3)It follows directly from the fact that G is a permutation group over X

and, therefore, a bijection. �

Using the previous theorem and definition it is possible to understand a
domain of imprimitivity as a element of a partition of X that is G-invariant.

When you have a group acting on itself by right multiplication, you can
understand a sub-group and its co-sets as domains of imprimitivity. We will
show more examples later on.

It is possible to notice that (3) let us make a connection between the size
of the action domain and the domains of imprimitivity. A straightforward

6 GUSTAVO DE PAULA SUPERVISED BY ANDRÉ NIES

consequence of that any action over a action domain with prime size has no
domain of imprimitivity and, as stated in the following definition, the action
is primitive.

Definition 4.6. A transitive group action of a group G over a finite set X
is primitive iff G has no domain of imprimitivity.

The definition of primitive action is adequate, but it can be hard to prove
it directly, so we have a theorem that helps us do it.

Theorem 4.7. A transitive group action of a group G over a finite set X
is primitive iff Ga is maximal for every a ∈ X.

Proof. Suppose Ga is not maximal, so there is H with Ga < H < G.
We claim Y = aH is a domain of imprimitivity. Since Ga < H, |aH| ≥ 2.
Since G is transitive, for any x ∈ X x = ag for some g ∈ G. Suppose

Y = X, then for any g ∈ G there is h ∈ H such ag = ah, therefore a = ahg−1

and then hg−1 ∈ Ga. So we have H = G, which is a contradiction.
Let y ∈ Y ∩ Y g, then there are h1, h2 ∈ H such y = ah1 = ah2g then

a = ah2gh
−1
1 and therefore g ∈ H and finally Y = Y g.

Conversely, suppose G has a domain of imprimitivity Y .
Let H = {r : Y r = Y }. We may suppose a ∈ Y , so Ga ≤ H. Y is a

domain of imprimitivity, then |Y | > 1 so there is b ∈ Y with b 6= a. G
is transitive then there is π ∈ G such aπ = b. Since Y is a domain of
imprimitivity, Y π = Y then π ∈ H −Ga and Ga < H.

Since |Y | < |X| and G is transitive, there is π ∈ G such aπ /∈ Y . Therefore
π /∈ H, H < G.

That way, there is H such Ga < H < G. �

Corollary 4.8. Let G be a permutation group over a finite set X and H
such Ga < H < G with a ∈ X then aH = {ah : h ∈ H} is a domain of
imprimitivity.

Another equivalent definition of primitive action that is commonly used
is:

Theorem 4.9. Let G be a transitive permutation group over a finite X.
G is primitive iff any non-diagonal orbit of X2 x G describe a connected
graph on X.

Proof. Suppose there is an non-diagonal orbit {x, y}G of (x, y) ∈ X2 that
describes a not connected graph. We want to prove that the connected
component Cx ⊂ X containing x is a domain of imprimitivity.

Since {x, y}G is not connected, Cx 6= X. We claim that Cxg is connected
and Cx is a domain of imprimitivity.

Take c1g, c2g ∈ Cxg, there is a path λ connecting c1 to c2, that way λg
connects c1g to c2g and therefore Cxg is connected.

Let z ∈ Cx∩Cxg, since Cxg is connected, any element of Cxg is connected
to z and z is connected to x. We have that Cxg = Cx and Cx is a domain
of imprimitivity.

Suppose there is some domain of imprimitivity Y ⊂ X and let x, y ∈ Y ,
x 6= y. Let ω be the graph described by {x, y}G.

We claim that there is some z ∈ X that is not connected to x by ω. Take
z ∈ X − Y , suppose there is a path

PRIMITIVE GROUPS ACTIONS AND GROUPS DESCRIPTIONS 7

{x, y} = {x, y}g0, {x, y}g1, ..., {x, y}gn = {xgn, z}

of ω connecting x to z. We are going to prove by induction that z ∈ Y :
By hypothesis, {x, y} ⊂ Y , since {x, y} ∩ {x, y}g1 6= ∅ and Y is a domain

of imprimitivity, then {x, y}g1 ⊂ Y .
Similarly, {x, y}gi ⊂ Y implies {x, y}gi+1 ⊂ Y . Therefore {xgn, z} ⊂ Y

and z ∈ Y which is a contradiction.
That way, ω is not connected. �

Iwasawa’s Lemma is an important criterion to show that a finite group
is simple, in [5] it was used to prove that SLn(q), F4(q), E6(q) and others
groups are simple.

The version of the lemma we state here does not mention the group being
simple, the version that does has the hypothesis of G being perfect,i.e.,
equals to the commutator subgroup.

Iwasawa’s Lemma 4.10. Let G be a primitive permutation group over X.
Suppose that for some a ∈ X, Ga contains a abelian subgroup A such ACGa
whose conjugates inG generate all ofG. Then any nontrivial subgroupNCG
contains the commutator subgroup of G.

Proof. Suppose N is a nontrivial normal subgroup of G then there is a ∈ X
such N 6⊂ Ga. Suppose there isn’t such a, then N ⊂ Gx, ∀x ∈ X which is a
contradiction since G acts faithfully on X.

By 4.7 Ga is maximal, then NGa = G. Let A be a normal subgroup of
Ga as stated in Iwasawa’s Lemma. For any g ∈ G, g = n.k, n ∈ N ,k ∈ Ga.
Then

gAg−1 = nkAk−1n−1 = nAn−1 ⊂ NAN = NA

Since the conjugates of A generate all G, NA = G.
By the second isomorphism theorem G/N ∼= NA/N ∼= A/(N ∩A)
Since A/(N ∩ A) is abelian, N ∩ A contains the commutator subgroup

and therefore N also contains it. �

4.1. Primitive decomposition.

Definition 4.11. Two group actions Uxi = S1 x G1 and Uyi = S2 x G2

are equivalent iff there is a bijection θ : S1 → S2 and a group isomorphism
φ : G1 → G2 such ∀s ∈ S1, ∀g ∈ G1, θ(s · g) = θ(s).φ(g).

Theorem 4.12. Let G be a group transitivily acting on a set X. Let

Ga = H0 < H1 < · · · < Hn = G

be a sequence of subgroups of G such that Hi−1 is maximal on Hi for i > 0.
Then

(1) [x]Ei
/
Ei−1

x Hi is a primitive action and

(2) [a]Ei
/
Ei−1

x Hi is equivalent to [b]Ei
/
Ei−1

x Hp
i ,

where Ei := {aHig : g ∈ G}, b = ap with a, b ∈ X and p ∈ G.

Proof. (1) By definition: [x]Ei = {aHig : x = ag, g ∈ Hi} and

[x]Ei
/
Ei−1

= {aHi−1h : h ∈ Hi}.

8 GUSTAVO DE PAULA SUPERVISED BY ANDRÉ NIES

Hi−1 is the stabilizer of the action and since it is maximal in Hi the
action is primitive.

(2) We have that y = xp, p ∈ G. Let θ : X → X and φ : G → G
behaving like in the diagram:

[a]Ei
/
Ei−1

Hi

[b]Ei
/
Ei−1

Hp
i

θ : x 7→ xp φ : g 7→ gp

Remark 4.13. [x]Ei
/
Ei−1

= {aHi−1h : h ∈ Hi}

By 4.8 we have that aHj with 1 < j < n is a domain of imprimi-
tivity. By 4.5 Ej is a partition with [x]Ejg = [xg]Ej

Let α = aHi−1k ∈ [a]Ei
/
Ei−1

and g ∈ G. Then:

θ(α) = aHi−1hp

= aHi−1pp
−1hp

= aHi−1pφ(h)

= [a]Ei−1pφ(h)

= [ap]Ei−1φ(h)

= [b]Ei−1φ(h)

(1)

θ(αg) = aHi−1hgp

= aHi−1pp
−1hpp−1gp

= aHi−1pφ(h)φ(g)

= [a]Ei−1pφ(h)φ(g)

= [ap]Ei−1pφ(h)φ(g)

= [b]Ei−1φ(h)φ(g) = θ(α)φ(g)

(2)

�

4.2. Examples of decompositions. We intend to show three examples of
primitive decomposition using the alternating group A4.

Example 4.14. The simplest example is A4 permuting a set X with 4 el-
ements as induced by S4. In this case, the stabilizer of any element is a
isomorphic copy of Z3 and maximal, so the action is primitive. In this case,
our decomposition is trivial.

Example 4.15. Let H < S6,H =< (34)(56), (12)(56), (135)(246) > acting
on X = {1, 2, 3, 4, 5, 6}.

Clearly J =< (34)(56), (12)(56) >∼= Z2
2 . Take α = (135)(246) since J is

small, it is not hard to calculate and see that α−1Jα = J and therefore J C

PRIMITIVE GROUPS ACTIONS AND GROUPS DESCRIPTIONS 9

H.J , Jα and Jα2 are the only coset, therefore |H| = 12. Taking (34)(56) =
β, (12)(56) = α2βα, we can now compute that H satisfy the presentation of
A4: < α, β|α3, β2, (αβ)3 >, therefore A4

∼= H.

H ∼= A4

< (34)(56), (12)(56) >∼= Z2
2

< (34)(56) >∼= Z2

< (135)(246) >∼= Z3

e

Figure 1. Subgroup Lattice of A4 < S6

Not all subgroups of H are represented in the lattice, but any other subgroup
is isomorphic to those represented.

It is clear that < (34)(56) >∼= Z2 is the stabilizer of 1 ∈ X, since it is not
maximal H does not act primitivily on X.

Using 4.12 we have that Z2 < Z2
2 < H is a chain of submaximal subgroups

as described by 4.12, X/E0 and X/E2 are trivial partitions.
The other partition and the group actions that arise from the theorem

can be represented like this:

1

2 3

4

56

(a) X/E1

1

2 3

4

56

(b) [1]E1/E0
x H1

1

2 3

4

56

(c) E2/E1 x H2

Figure 2. Primitive decomposition of A4 < S6

Example 4.16. Let A4 acting on itself by right multiplication.

Clearly {e} is the stabilizer of any a ∈ A4. Looking at figure 1 we see
that it is possible to choose two different chains of submaximal subgroups:

Ga = H0 < Z2 < Z2
2 < A4 = H3 and

Ga = K0 < Z3 < A4 = K2

10 GUSTAVO DE PAULA SUPERVISED BY ANDRÉ NIES

Since they have different lengths they give us two different decompositions,
one decompose the action into 3 primitive actions while the other decompose
it into 2 primitive actions.

We can represent the two different action decomposition as follows:

[x]E1/E0
x H1 is a permutation between the two elements of [x]E1/E0

,

represented as edges in Figure 3:

() (12)(34) (13)(24) (14)(23)

(123) (243) (142) (134)

(132) (143) (124) (234)

Figure 3. X/E1

[x]E2/E1
x H2 is a permutation between the two elements of [x]E2/E1

,

represented as ellipses in Figure 4:

() (12)(34) (13)(24) (14)(23)

(123) (243) (142) (134)

(132) (143) (124) (234)

Figure 4. X/E2

[x]E3/E2
x H3 is equivalent to Z3 acting on itself by right multiplication,

that is also equivalent to action described in 4.15.
Let Fi be the partition generated by Ki as described by 4.12. X/F1 can

be represented as:

() (12)(34) (13)(24) (14)(23)

(123) (134) (243) (142)

(132) (234) (124) (143)

Figure 5. X/F1

[x]F1/F0
x K1 is equivalent to Z3 acting on itself by right multiplication.

[x]F2/F1
x K2 is equivalent to Z2

2 acting on itself by right multiplication.

To study the relation between different decompositions of a same action
or the conditions for uniqueness of the decomposition might be a good way
to understand better group actions and their decompositions.

PRIMITIVE GROUPS ACTIONS AND GROUPS DESCRIPTIONS 11

References

[1] André Nies. Describing Groups. Bull. Symb. Logic. 13 no 3 (2007), 305-339. 1
[2] André Nies and Katrin Tent. Describing finite groups by short first-order sentences.

To be published 1, 2
[3] Yuki Maehara. Describing groups using first-order language. arXiv:1305.0080

[math.GR] 1
[4] László Babai and Endre Szemerédi. On the complexity of matrix group problems

I.Proceedings of 25th Annual Symposium on Foundations of Computer Science 1
[5] Robert A. Wilson. The Finite Simple Groups. Springer Science & Business Media,

2009 4

	1. Introduction
	2. Reachability Theorem
	2.1. Gradual Reachability theorem

	3. Reachability algorithm
	4. Primitive actions
	4.1. Primitive decomposition
	4.2. Examples of decompositions

	References

